资源类型

期刊论文 420

会议视频 3

年份

2024 1

2023 20

2022 50

2021 36

2020 28

2019 44

2018 15

2017 10

2016 15

2015 6

2014 17

2013 29

2012 15

2011 22

2010 10

2009 24

2008 20

2007 18

2006 6

2005 5

展开 ︾

关键词

混凝土 16

裂缝 9

三峡工程 7

三峡升船机 4

微地震监测 4

混凝土面板堆石坝 3

三点弯曲梁 2

升船机 2

实时监控 2

收缩 2

模型试验 2

混凝土坝 2

混凝土浇筑 2

碾压混凝土坝 2

组合梁 2

700 m跨径级别 1

ANSYS 1

CO2管道;离岸CCUS;海底管道;管道腐蚀;管道断裂;泄漏监测 1

D区 1

展开 ︾

检索范围:

排序: 展示方式:

Computational modeling of fracture in concrete: A review

Luthfi Muhammad Mauludin, Chahmi Oucif

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 586-598 doi: 10.1007/s11709-020-0573-z

摘要: This paper presents a review of fracture modeling of concrete. The complex material, such as concrete, has been widely used in construction industries and become trending issue in the last decades. Based on comprehensive literature review, there are two main approaches considered to-date of concrete fracture modeling, such as macroscopic and micromechanical models. The purpose of this review is to provide insight comparison from different techniques in modeling of fracture in concrete which are available. In the first section, an overview of fracture modeling in general is highlighted. Two different approaches both of macroscopic and micromechanical models will be reviewed. As heterogeneity of concrete material is major concern in micromechanical-based concrete modeling, one section will discuss this approach. Finally, the summary from all of reviewed techniques will be pointed out before the future perspective is given.

关键词: concrete fracture     macroscopic     micromechanical     heterogeneity    

Computational modeling of fracture in capsule-based self-healing concrete: A 3D study

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1337-1346 doi: 10.1007/s11709-021-0781-1

摘要: We present a three-dimensional (3D) numerical model to investigate complex fracture behavior using cohesive elements. An efficient packing algorithm is employed to create the mesoscale model of heterogeneous capsule-based self-healing concrete. Spherical aggregates are used and directly generated from specified size distributions with different volume fractions. Spherical capsules are also used and created based on a particular diameter, and wall thickness. Bilinear traction-separation laws of cohesive elements along the boundaries of the mortar matrix, aggregates, capsules, and their interfaces are pre-inserted to simulate crack initiation and propagation. These pre-inserted cohesive elements are also applied into the initial meshes of solid elements to account for fracture in the mortar matrix. Different realizations are carried out and statistically analyzed. The proposed model provides an effective tool for predicting the complex fracture response of capsule-based self-healing concrete at the meso-scale.

关键词: 3D fracture     self-healing concrete     spherical     cohesive elements     heterogeneous    

Experimental measurement of double-K fracture parameters of concrete with small-size aggregates

ZHANG Xiufang, XU Shilang, ZHENG Shuang

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 448-457 doi: 10.1007/s11709-007-0061-8

摘要: The double- fracture model can well describe the development of cracks undergoing during the entire fracture process in concrete. Therefore, it has been selected as the theoretical basis of the Norm for fracture test of

关键词: development     concrete     theoretical     double- fracture    

3D fracture modelling and limit state analysis of prestressed composite concrete pipes

Pengfei HE, Yang SHEN, Yun GU, Pangyong SHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 165-175 doi: 10.1007/s11709-018-0484-4

摘要: In this manuscript, we study fracture of prestressed cylindrical concrete pipes. Such concrete pipes play a major role in tunneling and underground engineering. The structure is modelled fully in 3D using three-dimensional continuum elements for the concrete structure which beam elements are employed to model the reinforcement. This allows the method to capture important phenomena compared to a pure shell model of concrete. A continuous approach to fracture is chosen when concrete is subjected to compressive loading while a combined continuous-discrete fracture method is employed in tension. The model is validated through comparisons with experimental data.

关键词: cylindrical concrete structures     limit state analysis     3D fracture modelling     prestressed composite pipes     reinforced concrete     three-point bending test    

The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone

Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 792-801 doi: 10.1007/s11709-020-0629-0

摘要: Finite element analysis is developed to simulate the breakage of capsule in capsule-based self-healing concrete. A 2D circular capsule with different core-shell thickness ratios embedded in the mortar matrix is analyzed numerically along with their interfacial transition zone. Zero-thickness cohesive elements are pre-inserted into solid elements to represent potential cracks. This study focuses on the effects of mismatch fracture properties, namely fracture strength and energy, between capsule and mortar matrix into the breakage likelihood of the capsule. The extensive simulations of 2D specimens under uniaxial tension were carried out to investigate the key features on the fracture patterns of the capsule and produce the fracture maps as the results. The developed fracture maps of capsules present a simple but valuable tool to assist the experimentalists in designing appropriate capsule materials for self-healing concrete.

关键词: self-healing concrete     interfacial zone     capsule materials     cohesive elements     fracture maps    

Effect of fly ash replacement level on the fracture behavior of concrete

Mahdi AREZOUMANDI, Jeffery S. VOLZ

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 411-418 doi: 10.1007/s11709-013-0228-4

摘要: The production of portland cement–the key ingredient in concrete–generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. ?This study presents the results of an experimental investigation that evaluates effect of fly ash replacement level on the fracture energy of concrete. This study includes four mixes with 0%, 30%, 50%, and 70% fly ash as a cement replacement. This experimental program consisted of 32 fracture beams to study the fracture behavior of concrete. The experimental fracture energies were compared with the fracture energy provisions of different design codes and also different analytical equations. Furthermore, statistical data analyses (parametric and non-parametric) were performed to evaluate whether or not there is any statistically significant difference between the experimental fracture energies of different mixes. Results of these statistical tests show that the mix with higher level of fly ash replacement level has higher fracture energy.

关键词: concrete     fracture energy     fly ash    

A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemicallybased self-consolidating concrete

Mahdi AREZOUMANDI, Mark EZZELL, Jeffery S VOLZ

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 36-45 doi: 10.1007/s11709-014-0243-0

摘要: This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that of a corresponding conventional concrete (CC) mix. The CC and SCC mix designs followed conventional proportioning in terms of aggregate type and content, cement content, air content, water-cementitiuos materials ( / ) ratio, and workability. Then, using only chemical admixtures, the authors converted the CC mix to an SCC mix with all of the necessary passing, filling, flowability, and stability requirements typically found in SCC. The high fluidity was achieved with a polycarboxylate-based high-range water-reducing admixture, while the enhanced stability was accomplished with an organic, polymer-based viscosity-modifying admixture. The comparison indicated that the SCC and CC mixes had virtually identical tensile splitting strengths, flexural strengths, creep, and shrinkage. However, the SCC mix showed higher compressive strengths and fracture energies than the corresponding CC mix.

关键词: admixture     conventional concrete (CC)     creep     fracture mechanic     mechanical Properties     self-consolidating concrete (SCC)     shrinkage    

Assessment of fracture process in forta and polypropylene fiber-reinforced concrete using experimental

Seyed Hamid KALALI; Hamid ESKANDARI-NADDAF; Seyed Ali EMAMIAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1633-1652 doi: 10.1007/s11709-022-0876-3

摘要: This paper aims to characterize the evolution of the fracture process and the cracking behavior in Forta-Ferro (FF) and Polypropylene (PP) fiber-reinforced concrete under the uniaxial compressive loading using experimental analysis and digital image correlation (DIC) on the surface displacement. For this purpose, 6 mix designs, including two FF volume fractions of 0.10, and 0.20% and three PP volume fractions of 0.20, 0.30, and 0.40%, in addition to a control mix were evaluated according to compressive strength, modulus of elasticity, toughness index, and stress-strain curves. The influence of fibers on the microstructural texture of specimens was analyzed by scanning electron microscope (SEM) imaging. Results show that FF fiber-reinforced concrete specimens demonstrated increased ductility and strength compared to PP fiber. DIC results revealed that the major crack and fracture appeared at the peak load of the control specimen due to brittleness and sudden gain of large lateral strain, while a gradual increase in micro-crack quantity at 75% of peak load was observed in the fiber specimens, which thenbegan to connect with each other up to the final fracture. The accuracy of the results supports DIC as a reliable alternative for the characterization of the fracture process in fiber-reinforced concrete.

关键词: fiber-reinforced concrete     forta-ferro and polypropylene fiber     fracture process     cracking behavior     digital image correlation    

Experimental investigations of internal energy dissipation during fracture of fiber-reinforced ultra-high-performanceconcrete

Eric N. LANDIS, Roman KRAVCHUK, Dmitry LOSHKOV

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 190-200 doi: 10.1007/s11709-018-0487-1

摘要: Split-cylinder fracture of fiber-reinforced ultra-high-performance concrete (UHPC) was examined using two complementary techniques: X-ray computed tomography (CT) and acoustic emission (AE). Fifty-mm-diameter specimens of two different fiber types were scanned both before and after load testing. From the CT images, fiber orientation was evaluated to establish optimum and pessimum specimen orientations, at which fibers would have maximum and minimum effect, respectively. As expected, fiber orientation affected both the peak load and the toughness of the specimen, with the optimum toughness being between 20% and 30% higher than the pessimum. Cumulative AE energy was also affected commensurately. Posttest CT scans of the specimens were used to measure internal damage. Damage was quantified in terms of internal energy dissipation due to both matrix cracking and fiber pullout by using calibration measurements for each. The results showed that fiber pullout was the dominant energy dissipation mechanism; however, the sum of the internal energy dissipation measured amounted to only 60% of the total energy dissipated by the specimens as measured by the net work of load. It is postulated that localized compaction of the UHPC matrix as well as internal friction between fractured fragments makes up the balance of internal energy dissipation.

关键词: ultra-high-performance concrete     concrete fracture     X-ray computed tomography     acoustic emission    

Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1317-1336 doi: 10.1007/s11709-021-0763-3

摘要: Tension stress in steel-concrete composite is widely observed in engineering design. Based on an experimental program on tension performance of three square concrete-filled tubes (SCFT), the tension theory of SCFT is proposed using a mechanics-based approach. The tension stiffening effect, the confining strengthening effect and the confining stiffening effect, observed in tests of SCFTs are included in the developed tension theory model. Subsequently, simplified constitutive models of steel and concrete are proposed for the axial tension performance of SCFT. Based on the MSC.MARC software, a special fiber beam-column element is proposed to include the confining effect of SCFTs under tension and verified. The proposed analytical theory, effective formulas, and equivalent constitutive laws are extensively verified against three available tests reported in the literature on both global level (e.g., load-displacement curves) and strain level. The experimental verification proves the accuracy of the proposed theory and formulations in simulating the performance of SCFT members under tension with the capability to accurately predict the tensile strength and stiffness enhancements and realistically simulate the fractal cracking phenomenon.

关键词: square concrete filled tubes     confine-stiffening     confine-strengthening     fractal cracking     fracture    

Correlation between tension softening relation and crack extension resistance in concrete

Xiufang ZHANG , Shilang XU ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 323-329 doi: 10.1007/s11709-009-0041-2

摘要: Changes of the material fracture energy consumption with crack propagation can be described by a crack extension resistance curve, one of the fundamental fracture criteria in crack mechanics. Recently, experimental observation of the fracture behavior in concrete was used to develop a new fracture criterion, the crack extension resistance curve, to analyze crack propagation during the entire concrete fracture process. The variation of the crack extension resistance is mainly associated with the energy consumption in the fracture process zone ahead of the stress-free crack tip. The crack extension resistance is then a function of the softening curve, which is a basic mechanical property in the fracture process zone. The relationship between the softening curve and the crack extension resistance curve is then analyzed based on results of three-point bending beams tests. The results indicate that the characteristic points of the crack extension resistance curve is closely related to the characteristic point on used tension softening curve.

关键词: concrete     fracture process zone     crack extension GR resistance     tension softening curve    

砼非标准三点弯曲梁试件双K断裂参数

吴智敏,徐世烺,丁一宁,卢喜经,刘佳毅,丁生根

《中国工程科学》 2001年 第3卷 第4期   页码 76-81

摘要:

采用跨高比为2.5的非标准三点弯曲梁试件,利用在试验中测得的最大荷载Pmax及对应的裂缝口张开位移CMODc,根据渐近线性叠加假设,求得了砼裂缝亚临界扩展量∆ac。在此基础上,采用虚拟裂缝模型计算了不同初始缝长、不同试件髙度的砼非标准三点弯曲梁试件的起裂断裂韧度KiniIC、失稳断裂韧度KunIC及临界裂 缝尖端张开位移CTODc。计算结果表明,砼KunIC:与试件高度及初始缝高比无关;而KiniIC在初始缝髙比a0/h = 0.3〜0.5内,也是一稳定的常数且与试件高度无关。这说明砼双K断裂参数可以作为砼的材料常数。

关键词:     三点弯曲梁     断裂参数    

Mechanical properties and impact resistance of concrete composites with hybrid steel fibers

Fatih ÖZALP; Halit Dilşad YILMAZ; Burcu AKCAY

《结构与土木工程前沿(英文)》 2022年 第16卷 第5期   页码 615-623 doi: 10.1007/s11709-022-0828-y

摘要: The aim of this study is to develop concrete composites that are resistant to armor-piercing projectiles for defense structures. Different reinforcement configurations have been tested, such as short steel fibers, long steel fibers, and steel mesh reinforcement. Three different concrete mix designs were prepared as “Ultra High Performance (UHPFRC), High Performance (HPFRC) and Conventional (CFRC) Fiber Reinforced Concrete”. The content of hybrid steel fibers was approximately 5% in the UHPFRC and HPFRC mixtures, while the steel fiber content was approximately 2.5% in the CFRC mixture. In addition, a plain state of each mixture was produced. Mechanical properties of concrete were determined in experimental studies. In addition to the fracture energy and impact strength, two important indicators of ballistic performance of concrete are examined, which are the penetration depth and damage area. The results of the study show that the depth of penetration in UHPFRC was around 35% less than that in HPFRC. It was determined that the mixtures of UHPFRC and HPFRC containing 5% by volume of hybrid steel fibers showed superior performance (smaller crater diameter and the less projectile penetration depth) against armor-piercing projectiles in ballistic tests and could be used in defense structures.

关键词: projectile impact     depth of penetration     fracture energy     crater diameter     UHPFRC    

Secondary transfer length and residual prestress of fractured strand in post-tensioned concrete beams

Lizhao DAI; Wengang XU; Lei WANG; Shanchang YI; Wen CHEN

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 388-400 doi: 10.1007/s11709-022-0809-1

摘要: An experimental study is performed on five post-tensioned concrete beams to explore the effects of different fracture positions on secondary transfer length and residual prestress of fractured strand. A numerical model is developed and used to predict the secondary transfer length and residual prestress of fractured strand in post-tensioned concrete beams. The model change interaction, which can deactivate and reactivate the elements for simulating the removal and reproduction of parts of the model, is used to reproduce the secondary anchorage of fractured strand. The numerical model is verified by experimental results. Results shows that the fractured strand can be re-anchored in concrete through the secondary anchorage, and the secondary transfer length of fractured strand with the diameter of 15.2 mm is 1133 mm. The residual prestress of fractured strand increases gradually in the secondary transfer length, and tends to be a constant beyond it. When the fractured strand is fully anchored in concrete, a minor prestress loss will appear, and the average prestress loss is 2.28% in the present study.

关键词: post-tensioned concrete beams     strand fracture     secondary transfer length     residual prestress    

A general framework for modeling long-term behavior of earth and concrete dams

Bernhard A. SCHREFLER, Francesco PESAVENTO, Lorenzo SANAVIA, Giuseppe SCIUME, Stefano SECCHI, Luciano SIMONI

《结构与土木工程前沿(英文)》 2011年 第5卷 第1期   页码 41-52 doi: 10.1007/s11709-010-0070-x

摘要: Many problems are linked with the long-term behavior of both earthdams and concrete dams. They range from hydraulic fracturing to alkali-silica reaction (ASR) and to repair work in concrete dams, from seismic behavior to secondary consolidation in earthdams. A common framework for the simulation of such systems is shown, based on the mechanics of multiphase porous media. The general model is particularized to specific situations and several examples are shown.

关键词: earth dams     concrete dams     multiphase porous materials     coupled problems     hydraulic fracture     concrete hydration     alkali-silica reaction (ASR)     finite element method    

标题 作者 时间 类型 操作

Computational modeling of fracture in concrete: A review

Luthfi Muhammad Mauludin, Chahmi Oucif

期刊论文

Computational modeling of fracture in capsule-based self-healing concrete: A 3D study

期刊论文

Experimental measurement of double-K fracture parameters of concrete with small-size aggregates

ZHANG Xiufang, XU Shilang, ZHENG Shuang

期刊论文

3D fracture modelling and limit state analysis of prestressed composite concrete pipes

Pengfei HE, Yang SHEN, Yun GU, Pangyong SHEN

期刊论文

The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone

Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK

期刊论文

Effect of fly ash replacement level on the fracture behavior of concrete

Mahdi AREZOUMANDI, Jeffery S. VOLZ

期刊论文

A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemicallybased self-consolidating concrete

Mahdi AREZOUMANDI, Mark EZZELL, Jeffery S VOLZ

期刊论文

Assessment of fracture process in forta and polypropylene fiber-reinforced concrete using experimental

Seyed Hamid KALALI; Hamid ESKANDARI-NADDAF; Seyed Ali EMAMIAN

期刊论文

Experimental investigations of internal energy dissipation during fracture of fiber-reinforced ultra-high-performanceconcrete

Eric N. LANDIS, Roman KRAVCHUK, Dmitry LOSHKOV

期刊论文

Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel

期刊论文

Correlation between tension softening relation and crack extension resistance in concrete

Xiufang ZHANG , Shilang XU ,

期刊论文

砼非标准三点弯曲梁试件双K断裂参数

吴智敏,徐世烺,丁一宁,卢喜经,刘佳毅,丁生根

期刊论文

Mechanical properties and impact resistance of concrete composites with hybrid steel fibers

Fatih ÖZALP; Halit Dilşad YILMAZ; Burcu AKCAY

期刊论文

Secondary transfer length and residual prestress of fractured strand in post-tensioned concrete beams

Lizhao DAI; Wengang XU; Lei WANG; Shanchang YI; Wen CHEN

期刊论文

A general framework for modeling long-term behavior of earth and concrete dams

Bernhard A. SCHREFLER, Francesco PESAVENTO, Lorenzo SANAVIA, Giuseppe SCIUME, Stefano SECCHI, Luciano SIMONI

期刊论文